E. 454(7201):21720. Howlett N, Dauber KL, Shukla A, Morton B, Glendinning JI, Brent E, Gleason C, Islam F, Izquierdo D, Sanghavi S, et al. 2012. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference. BMC Genomics. 13:211. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM, Jenkins AM, Regna K, Muskavitch MA, Garrity PA. 2012. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. 481(7379):760. Kester KM, Peterson SC, Hanson F, Jackson M, Severson RF. 2002. The roles of nicotine and organic enemies in determining larval feeding internet site distributions of Manduca sexta L. and Manduca quinquemaculata (Haworth) on tobacco. Chemoecology. 12:10. Kim SH, Lee Y, Akitake B, Woodward OM, Guggino WB, Montell C. 2010. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci USA. 107(18):8440445. Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, Guggino WB, Smith DP, Montell C. 2010. Drosophila TRPA1 channel is required to prevent the naturally occurring insect repellent citronellal. Curr Biol. 20(18):1672678. Kwon Y, Shim HS, Wang X, Montell C. 2008. Control of thermotactic behavior by means of coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci. 11(eight):87173. Lu B, Breza JM, Nikonov AA, 5-HT4 Receptor Purity & Documentation Paedae AB, Contreras RJ. 2012. Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiol Behav. 107(4):53339. Madden AH, Chamberlin FS. 1945. Biology on the tobacco hornworm in the southern cigar-tobacco district. USDA Technical Bull. 896:11. Martin F, Riveron J, Alcorta E. 2011. Environmental temperature modulates olfactory reception in Drosophila melanogaster. J Insect Physiol. 57(12):1631642. Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T. 2009. Evolutionary conservation and modifications in insect TRP channels. BMC Evol Biol. 9:228. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, et al. 2007.AcknowledgementsWe thank nNOS supplier Frederic Marion-Poll for precious editorial comments.
Kaposi’s Sarcoma-Associated Herpesvirus-Positive Main Effusion Lymphoma Tumor Formation in NOD/SCID Mice Is Inhibited by Neomycin and Neamine Blocking Angiogenin’s Nuclear TranslocationVirginie Bottero,a Sathish Sadagopan,b Karen E. Johnson,a Sujoy Dutta,a Mohanan Valiya Veettil,a Bala ChandranaH.M. Bligh Cancer Analysis Laboratories, Department of Microbiology and Immunology, Chicago Health-related College, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USAa; Anthem Biosciences Pvt. Ltd., Karnataka, IndiabAngiogenin (ANG) is a 14-kDa multifunctional proangiogenic secreted protein whose expression level correlates with all the aggressiveness of several tumors. We observed enhanced ANG expression and secretion in endothelial cells through de novo infection with Kaposi’s sarcoma-associated herpesvirus (KSHV), in cells expressing only latency-associated nuclear antigen 1 (LANA-1) protein, and in KSHV latently infected primary effusion lymphoma (PEL) BCBL-1 and BC-3 cells. Inhibition of phospholipase C (PLC ) mediated ANG’s nuclear translocation by neomycin, an aminoglycoside antibiotic (not G418-neomicin), resulted in decreased KSHV latent gene expression, improved lytic gene expression, and increased cell death of KSHV PEL and endothelial cells. ANG detection in important levels in KS and PEL lesions highlights its importance.